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Abstract. A new perturbation approach is developed for single- and many-electron Holstein model in
one-, two-, and three-dimension. The results show that this approach has a good agreement with the
Migdal theory in the adiabatic regime when the coupling is moderate (λ < 1), but with the Lang-Firsov
theory in the antiadiabatic regime (ω0/W � 1). In the intermediate region, our approach can describe the
transition from a large-polaron Fermi-liquid to the small-polaron, and this transition may be discontinuous
in adiabatic regime, which means a phase transition appears in many-electron system. In single-electron
case, we eliminate the abrupt transition using the degenerate perturbation theory, and the calculated
ground state energy and effective mass are successfully compared with those of previous authors. Besides,
the method has the advantage of requiring little computational effort.

PACS. 71.38.-k Polarons and electron-phonon interactions – 64.60.-i General studies of phase transitions –
71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Recently the polaronic behavior of charge carriers in
electron-phonon interacting systems has received consid-
erable attention due to important classes of materials,
such as the high-temperature superconductors [1] and
the colossal magnetoresistance manganites [2]. Among the
models for electron-phonon coupling systems the Holstein
model may be the simplest one but contains the main
physics. The Hamiltonian of it is

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ)− µ0

∑
j,σ

c†jσcjσ

+
∑

j

ω0b
†
jbj + g

∑
jσ

(c†jσcjσ − n)(b†j + bj). (1)

The first summation is over nearest-neighbors. Here b†j
(bj) is the creation (annihilation) operator of local phonon
mode on site j with frequency ω0, c†jσ (cjσ) is the cre-
ation (annihilation) operator of an electron on site j with
spin σ. t is the hopping integral and g the electron-phonon
coupling constant. n = 〈c†jσcjσ〉 is the number density
of electrons with bare chemical potential µ0. There are
two commonly used dimensionless parameters, the adia-
baticity ratio γ = ω0/W (W = 2dt is half-band width,
where d is the dimension), and the electron-phonon cou-
pling strength λ = Ep/W , where Ep = g2/ω0 is the pola-
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ronic binding energy. An additional dimensionless param-
eter is Ep/ω0.

The model has motivated many studies since Holstein’s
pioneering work in 1959 [3]. The perturbation treatments,
starting either from the free-electron limit (weak coupling
limit) or from the atomic limit (strong coupling expan-
sions), fail to describe the dressing effect in the inter-
mediate region. The variational ansatz, based on various
choices of trial wave functions, are expected to give re-
liable results only for ground state properties. In recent
years, numerical methods, such as the Monte Carlo simu-
lations [4], the density matrix renormalization group anal-
ysis [5], and the exact diagonalization of small clusters [6],
have been used for studies of the Holstein model with spe-
cial attention to the single polaron problem. Furthermore,
the dynamical mean-field theory of the model, which be-
comes exact in the limit of infinite-dimension, has been
established for the single-electron case [7].

For many-electron case, a reliable approach is crucial
due to the failure of the standard approximations; in fact,
as pointed out by Alexandrov et al. [8], the Migdal ap-
proximation is valid only for a weakly coupled adiabatic
system, while the Lang-Firsov’s canonical transformation
treatment [9] could not be suitable far from the antia-
diabatic limit. Migdal-Eliashberg(ME) theory gives a de-
scription without instability (where the Fermi-liquid de-
scription may break down) at any value of the coupling
constant λ. The Lang-Firsov(LF) transformation together
with the small polaron approximation [1,9] cannot lead to
those results which can be obtained via the ME approach.



256 The European Physical Journal B

In this work we propose a new perturbation approach
to the single- and many-electron Holstein model for one-,
two- and three-dimensions. We try to utilize the advan-
tages of both the variational and perturbation methods
and the main idea of the approach is as follows. In the
weak coupling perturbation theory, H in (1) can be di-
vided as H = H0 + V where V is the last term and
treated as the perturbation. We try to find a better way
to divide the Hamiltonian into unperturbed part and per-
turbation by means of the unitary transformation: H̃ =
exp(S)H exp(−S) = H̃0 + Ṽ . H̃0 should be simple enough
to be solved exactly and, at the same time, contains the
main physics of the coupling system. Ṽ should be small in
the meaning that the matrix elements of Ṽ between differ-
ent eigenstates of H̃0 are as small as possible. Besides, the
ground state average of the transformed Hamiltonian H̃0

is minimized by a variational ansatz.
This paper is organized as follows. In the next section

we introduce our approach. The method will be applied to
many-electron case and the results are summarized in Sec-
tion 3. In Section 4, we solve the single polaron problem
and compare the results with those of previous authors to
show that our approach is well in reproducing the ground
state energy and the effective mass of single polaron. Sec-
tion 5 is devoted to a summary.

2 The method

2.1 The q-dependent transformation

A q-dependent transformation is applied to H, H ′ =
exp(S1)H exp(−S1), where

S1 =
1√
N

∑
j,q,σ

g

ω0
rqeiq·j(b†−q − bq)(c†jσcjσ − n)

=
∑
i,j,σ

g

ω0
r(i− j)(b†j − bj)(c

†
iσciσ − n). (2)

N is the total number of sites. Here we introduce a dis-
placement function rq which is q-dependent and its form
will be determined later. The non-local electron-phonon
correlation r(i− j) is related to rq by a Fourier transfor-
mation: r(i− j) = 1

N

∑
q exp[iq · (i− j)]rq. For the small

polaron the lattice deformation accompanied it is confined
to the site where the electron sits, so rq = 1, r(i− j) =
δi,j, and the transformation (2) becomes the Lang-Firsov
transformation [9–11]. For general case, r(i− j) 6= 0 when
i 6= j and it may be a measure of the intersite electron-
phonon correlation.

The transformation can be done to the end and terms
after transformation can be collected as follows:

H ′ = H ′0 +H ′1 +H ′2,

H ′0 =
∑
k,σ

(ηεk − µ0)c†kσckσ +
∑
q

ω0b
†
qbq, (3)

η = exp

{
− 1
N

∑
q

g2

ω2
0

r2
q(1− γq)

}
, (4)

H ′1 =
1√
N

∑
k,q,σ

g(1− rq)(b†−q + bq)c†k+qσckσ

− 1√
N

∑
k,q,σ

gηrq
εk+q − εk

ω0
(b†−q − bq)c†k+qσckσ,

(5)

H ′2 = −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) {cosh [Xi,j]− η}

− t
∑
〈i,j〉,σ

(c†iσcjσ − c
†
jσciσ) {sinh [Xi,j]− ηXi,j}

− 1
N

∑
k,k′,σ,σ′

∑
q(6=0)

g2

ω0
rq(2− rq)c†k+qσckσc

†
k′−qσ′ck′σ′ ,

(6)

Xi,j =
1√
N

∑
q

g

ω0
rq
(
b†−q − bq

) [
e−iq·i − e−iq·j] . (7)

Terms in H ′2 are second order in g or higher.
γk = 1

d

∑d
τ=1 cos(kτ ) and εk = −2dtγk.

In single electron case, in order to eliminate the second
order contribution ofH ′1 to the self-energy of ground state,
we can let rq = ω0

ω0+η(εq−ε0) , which is the same as that of
the Lee-Low-Pines(LLP) method.

2.2 The energy-dependent transformation

For many-electron case, the conduction band is filled to
the Fermi level and, therefore, the second order contribu-
tion of H ′1 to the ground state energy will not vanish no
matter how we choose the form of rq. So we use another
unitary transformation [11] to take into account the con-
tribution of H ′1: H ′′ = exp(S2)(H ′0 +H ′1 +H ′2) exp(−S2),
where

S2 =
1√
N

∑
k,q,σ

g

ω0
(b†−q − bq)[δ(k + q,k)− rq]c†k+qσckσ.

(8)

Here a function δ(k′,k), which is a function of the energies
of incoming and outgoing electrons in the electron-phonon
scattering process, is introduced. The form of δ(k′,k) will
be determined later. The transformation can proceed or-
der by order and the result is:

H ′′0 =
∑
k,σ

ρ(εk)(εk − µ)c†kσckσ +
∑
q

ω0b
†
qbq, (9)

ρ(εk)(εk − µ) = ηεk − µ0 −
1
N

∑
k′

g2

ω0
δ(k′,k)

× [2− δ(k′,k)]sgn(εk′ − µ)

+
1
N

∑
q

g2

ω2
0

η(εk+q − εk)

×
(
δ2(k + q,k)− r2

q

)
, (10)
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where µ is the renormalized chemical potential.

H ′′1 = H ′1 + [S2,H
′
0] =

1√
N

∑
k,q,σ

g[1− δ(k + q,k)]

×(b†−q + bq)c†k+qσckσ −
1√
N

∑
k,q,σ

g

ω0

×η(εk+q − εk)δ(k + q,k)(b†−q − bq)c†k+qσckσ, (11)

H ′′2 =
∑
k,σ

(ηεk − µ0 − ρ(εk)(εk − µ))c†kσckσ +H ′2

+[S2,H
′
1] +

1
2

[S2, [S2,H
′
0]]

= −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) {cosh [Xi,j]− η}

−t
∑
〈i,j〉,σ

(c†iσcjσ − c
†
jσciσ) {sinh [Xi,j]− ηXi,j}

+
1
N

∑
k,k′,σ

g2

ω0
δ(k′,k)[2−δ(k′,k)]sgn(εk′−µ)c†kσckσ

− 1
N

∑
k,k′,σ,σ′

∑
q(6=0)

g2

ω0
δ(k + q,k)

×[2− δ(k′ − q,k′)]c†k+qσckσc
†
k′−qσ′ck′σ′ . (12)

All terms of higher order than g2 will be omitted in the
following treatment. Note that rq should be helpful for
the convergence of the second transformation since the
generator S2 depends on the difference δ(k + q,k)− rq.

The free energy can be calculated by the follow-
ing perturbation expansion in the electron-phonon cou-
pling g [12],

−β(F − F0) = −
∫ β

0

dτ〈H ′′1 (τ)〉0

+
∫ β

0

dτ1
∫ τ1

0

dτ2 〈[H ′′1 (τ1)H ′′1 (τ2)]〉0

−
∫ β

0

dτ〈H ′′2 (τ)〉0 +O(g3), (13)

F0 = −T ln Tr exp[−H ′′0 /T ] + µ0N, β = 1/T, (14)

where H ′′(τ) = exp(H ′′0 τ)H ′′ exp(−H ′′0 τ) is in the inter-
action picture and

〈...〉0 = Tr{exp(−βH ′′0 )[...]}/Tr exp(−βH ′′0 ).

Obviously one can see that the first term on the right
side of (13) is zero because of the linear form of phonon
operators in H ′′1 . The second term, which is the second
order contribution of H ′′1 , is not zero in general. However,
we can choose the functional form of δ(k + q,k),

δ(k + q,k) = ω0/(ω0 + η|εk+q − εk|), (15)

so that ∫ β

0

dτ1
∫ τ1

0

dτ2〈[H ′′1 (τ1)H ′′1 (τ2)]〉0 = 0, (16)

when T = 0 (ground state). This is nothing but making
the matrix element of H ′′1 between the ground state and
the lowest-lying excited states of H ′′0 vanishing. Thus the
first order terms H ′′1 which are not exactly cancelled after
the two unitary transformations are related to the higher
lying excited states and should be irrelevant under renor-
malization.

The electron Green’s function can be derived from the
Dyson’s equation

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω). (17)

The second order self-energy of H ′′1 is

Σ(k, ω) =
1
N

∑
q

η2g2

(ω0 + η|εk−q − εk|)2

×
{

[|εk−q−εk|−(εk−q−εk)]2
n(ω0)+1−f(εk−q)

ω−ω0 − ρ(εk−q)(εk−q−µ)

+[|εk−q − εk|+(εk−q−εk)]2
n(ω0)+f(εk−q)

ω+ω0−ρ(εk−q)(εk−q−µ)

}
,

(18)

where n(ω0) = 1/(exp(βω0) − 1) and f(εk) =
1/(exp[βρ(εk)(εk − µ)] + 1). The renormalized chemical
potential µ can be determined by

1− n =
1
N

∑
k

sgn(εk − µ). (19)

When T = 0, we have n(ω0) = 0 and f(εk) is a step
function, and then, Σ(εk = µ, ω) = 0. This is the reason
for the choice of the functional form of δ(k + q,k). For
comparison, the ordinary second order self-energy is

Σo(k, ω) =
1
N

∑
q(6=0)

g2

{
n(ω0) + 1− fo(εk−q)
ω − ω0 − εk−q + µ

+
n(ω0) + fo(εk−q)
ω + ω0 − εk−q + µ

}
, (20)

where fo(εk) = 1/(exp[β(εk − µ)] + 1). We have Σo(εk =
µ, ω) 6= 0.

3 Many-electron case

The quasi-particle energy Ek should include the total self-
energy in the second order in g. The contribution fromH ′′2 ,
which can be calculated easily with the Hatree-Fock ap-
proximation, is zero. The contribution fromH ′′1 is the real
part of equation (18), Re[Σ(k, Ek−µ0)], which should be
zero at the Fermi surface when T = 0 according to the
preceding discussion. Thus, the quasi-particle energy Ek,
determined as the pole of the Green’s function, is

Ek − µ0 = ρ(εk)(εk − µ) + Re[Σ(k, Ek − µ0)]. (21)

The renormalized chemical potential µ is already deter-
mined by equation (19). The bare one is then deter-
mined by

µ0 = Ek|εk=µ, (22)
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which leads to

µ0 = η(1− ln η)µ− 1
N

∑
k′

g2 ω0 + 2η|εk′ − µ|
(ω0 + η|εk′ − µ|)2

× sgn(εk′ − µ) +
1
N

∑
k′

g2 η(εk′ − µ)
(ω0 + η|εk′ − µ|)2

· (23)

Now we can get the effective mass of the electrons at the
Fermi surface when T = 0,

m

m∗
= ρ(εk = µ)

= η

{
1− ln η − 1

N

∑
k

g2

(ω0 + η|εk − µ|)2

}
· (24)

The ground state energy can be derived from equa-
tions (13) and (14) (T = 0). The contribution of H ′′1 is
zero and the contribution from other terms in H ′′0 and H ′′2
can be collected as follows:

Eg =
∑
k,σ

η(1− ln η)εk〈c†kσckσ〉0

+
1
N

∑
k,q,σ

g2

ω2
0

η(εk+q − εk)δ2(k + q,k)〈c†kσckσ〉0

− 1
N

∑
k,q,σ

g2
q

ω0
δ(k + q,k)[2− δ(k,k + q)]

×〈c†k+qσck+qσ〉0〈ckσc†kσ〉0. (25)

Although the form of δ(k + q,k) is already deter-
mined, the form of rq in S1 has not been determined.
Note that rq dose not appear in Eg explicitly and Eg de-
pends on rq implicitly via η. Thus, we can variationally
determine the value of η by differentiation:

ln η =
1
N

∑
k,q,σ g

2 2η|εk+q−εk|2+(εk+q−εk)(ω0−η|εk+q−εk|)
(ω0+η|εk+q−εk|)3∑

k,σ εk〈c
†
kσckσ〉0

×
〈
c†kσckσ

〉
0

〈
ck+qσc

†
k+qσ

〉
0
· (26)

The summation for the momentum k and q could be sim-
plified as an integral over the energy by using the DOS
(density of state) of energy band. We calculate the effec-
tive mass of electrons at the Fermi surface with the DOS
of tight-binding approximation (TBA) model.

At the weak coupling limit λ� 1, the solution of equa-
tion (26) is η ≈ 1, and then ρ→ (1− 1

N

∑
k

g2

(ω0+|εk−µ|)2 ).
This is similar to the result of ME theory

m/m∗ =

(
1 +

1
N

∑
k

g2

(ω0 + |εk − µ|)2

)−1

·

In the strong coupling regime Ep/ω0 � 1, we have so-

lution η = exp
[
−Epω0

]
and thus the effective mass is the
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Fig. 1. The effective mass of electrons at the Fermi surface
with different adiabaticity ratio ω0/W in 2D. The renormalized
chemical potential µ = −0.8 (in this paper, µ is in unit of half
bandwidth W ).

same as that of the Lang-Firsov approach,

ρ(εk = µ) = exp
[
−Ep
ω0

]
.

In Figures 1 and 2, we report the effective mass of elec-
trons at the Fermi surface obtained within our approach
(Eq. (24)) in two-dimension together with the results of
ME and LF approach. Our approach recovers the ME
or LF result in different regions and it gives the transi-
tion in between. In Figure 1, we show the effective mass
as a function of the coupling strength with fixed adiabatic-
ity ratio. We find that there is an intermediate-coupling
region (1.0 < λ < 1.5) where both ME theory and LF
theory do not work well and a discontinuous transition
appears in this region when the adiabaticity ratio is small
enough. In Figure 2, we show the variation of the effective
mass from adiabatic to antiadiabatic region with fixed ra-
tio Ep/ω0. With increasing binding energy, the adiabatic
region shrinks and the difference of the effective mass be-
tween large and small polaron increases. When the binding
energy exceeds a critical value, the effective mass changes
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Fig. 2. The effective mass of electrons at the Fermi surface
with different Ep/ω0 in 2D. The chemical potential µ = −0.5.

discontinuously to an enormous value with increasing ra-
tio ω0

W . In the materials with narrow band(ω0
W ∼ 0.8 for

doped C60, ∼ 0.2 for cuprates and ∼ 0.15 for mangan-
ites), if the ratio of polaronic binding energy to phonon
frequency Ep

ω0
> 3 (Epω0

> 5 for Jahn-Teller(JT) distortion
in manganites), the strong electron-phonon coupling will
lead to the formation of a many-electron “self-trapped”
state.

The electron-phonon correlation function χ(i− j) can
be defined as

χ(i− j) =
〈(b†j + bj)c

†
i ci〉0

A
=

Tr{exp(−βH)(b†j + bj)c
†
i ci}

ATr exp(−βH)

=
Tr{exp(−βH ′′)eS2eS1(b†j + bj)c

†
i cie

−S1e−S2}
ATr exp(−βH ′′) · (27)

χ(i− j) indicates the strength of the electron-induced lat-
tice distortion and its spatial extent, where A =

∑
j〈(b

†
j +

bj)c
†
i ci〉0 is a normalization factor. After some calculations

we get (all terms of order O(g3) are neglected)

A× χ(i− j) = − 2
N

∑
k

∑
q(6=0)

g

ω0
δ(k− q,k)

×e−iq·j〈c†k−qckc
†
i ci〉0

= − 2
N

∑
k,q

g

ω0
(δ(k− q,k)− φq)e−iq·j

×〈c†k−qckc
†
i ci〉0 −

2
N

∑
k,q

g

ω0
φqe−iq·j

×〈c†k−qckc
†
i ci〉0 +

2
N

∑
k

g

ω0
〈c†kckc

†
i ci〉0.

(28)

where φq = 1
N

∑
k δ(k− q,k).

4 Single-electron case

In this section, our approach is used to treat the single
electron problem. We compare our results with previous
ones to show that our approach is quite well in reproduc-
ing the ground state energy and the effective mass of single
polaron. For single electron case, the renormalized chem-
ical potential µ = −2dt in the case of cosine energy band
εk = −2dtγk. Then equations (21, 24), and (27) become:

Ek = η(1− ln η)εk + Re[Σ(k, Ek − µ0)]

− 1
N

∑
k′

g2

ω0
δ(k′,k)[2− δ(k′,k)]

+
1
N

∑
q

g2

ω2
0

η(εk+q − εk)δ2(k + q,k), (29)

ρ(εk = µ) = η

{
1− ln η − 1

N

∑
k

g2

(ω0 + η|εk + 2dt|)2

}
,

(30)

χ(i− j) =
1
N

∑
q

eiq·(i−j)δ(0,q). (31)
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η can be determined by the variational method and equa-
tion (26) becomes:

ln η = − 1
N

∑
q

g2(1− γq)
(ω0 + η|εq + 2dt|)2

· (32)

which is the same as the LLP approach. However, as the
form of rq in S1 is not determined from the beginning
and the ground state energy Eg depends on rq implicitly
via η, for the single-polaron problem we would use another
variational ansatz to determine η.

For the single-polaron case it has been proved that
the discontinuous transition between the large and small
polaron may be an artifact and come from the variational
ansatz [13]. From the mathematical view point, the discon-
tinuous transition comes from the fact that equation (32)
has more than one solution (corresponding to different
minimums of Eg) when the adiabaticity ratio is small. In
order to remove the discontinuous transition and make it
a continuous one, we utilize the degenerate perturbation
theory: Let the real ground state be a superposition of the
near-degenerate solutions of equation (32).

In the intermediate-coupling region, where two near-
degenerate variational ground states (|ψs〉 and |ψl〉) coex-
ist, we suppose that the real ground state |ψ〉 is the linear
superposition of these two states:

|ψ〉 =
A|ψs〉+B|ψl〉√
A2 +B2 + 2ABS

· (33)

where S is the overlap factor of the two wave functions |ψs〉
and |ψl〉

S =
〈ψs|ψl〉+ h.c.

2
· (34)

In equation (33) A and B are two additional varia-
tional parameters that provide the relative weight of |ψs〉
and |ψl〉. The procedure of minimization of the quantity
〈ψ|H|ψ〉/〈ψ|ψ〉 with respect to A and B gives the polaron
energy

E =
Em−SEc−

√
(Em−SEc)2−(1−S2)(ElEs−E2

c )
1− S2

,

(35)

and the ratio

A

B
=
Ec −ES
E −El

· (36)

Here, Em = (El + Es)/2 and Ec = (〈ψl|H|ψs〉 + h.c.)/2.
El and Es are the energy of |ψs〉 and |ψl〉. Finally the
overlap factor and the matrix element of the Hamiltonian
between the two solutions |ψs〉 and |ψl〉 are,

S = 〈ψl|ψs〉 = exp

(
− 1

2N

∑
q

g2

ω2
0

(rsq − rlq)2

)
, (37)
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Fig. 3. Single-polaron effective mass m/m∗. The adiabaticity
ratio ω0/W for 1D is 0.5, for 2D is 0.25 and for 3D is 0.167.
OMC data are kindly provided by Kornilovitch. The results of
Weak Coupling Perturbation theory that predicts the effective

mass as m/m∗ = (1 +
P
q

g2

(ω0+εq+2dt)2
)−1 are also shown for

comparison.

Table 1. Polaron ground state energies (in unit of t) at k = 0
in 1D, 2D and 3D for λ = 0.5 and ω0/W = 1.0.

1D 2D 3D
L.C. Ku −2.469685 −4.814736 −7.162395

This work −2.455992 −4.792187 −7.132117

and

〈ψl|H|ψs〉 = −2t exp

(
− 1

2N

∑
q

g2

ω2
0

|rsq − rlqe−iq|2
)

− g2

ω0
S
∑
q

(rsq + rlq − rsqrlq). (38)

Here, rsq = ω0
ω0+ηs(εq+2dt) and rlq = ω0

ω0+ηl(εq+2dt) , where ηs
and ηl are two solutions of equation (32). We redefine the
quantity η:

η =
A2ηl+B2ηs+2AB exp

(
− 1

2N

∑
q
g2

ω2
0
|rsq − rlqe−iq|2

)
A2 +B2 + 2ABS

·
(39)

Now we can describe the polaronic effect more properly in
the intermediate-coupling region.

Figure 3 shows the effective mass of the single-polaron
case for 1D, 2D and 3D. For comparison, the data from the
quantum Monte Carlo simulations and those of the weak
coupling perturbation theory (WCPT) are also shown.
Obviously our approach works well in the weak- and
intermediate-coupling case, especially in the nonadiabatic
regime. Table 1 compares our results with those of Ku’s
variational method [15] for intermediate coupling. We note
that our approach gives reasonably accurate results for
ground state energy and the fractional error is about 0.5%.
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Fig. 4. The electron-lattice correlation χ(i− j) as a function
of (i− j) for 1D when ω0/W = 0.5, λ = 0.5 and λ = 2.75. The
hollow symbols are for many-electron case (µ = −0.2) and the
solid ones are for single-electron case.

As an approach that could be easily extended to the many-
electron case, the accuracy of these results is satisfying.

Figure 4 shows the electron-lattice correlation func-
tion χ(i− j) for moderate coupling (λ = 0.5) and strong
coupling (λ = 2.75) for both the single- and many-electron
systems. In strong coupling case, the lattice deformation is
confined to the site where the electron sits, which indicates
that our method can provide a quantitative picture of the
“self-trapped” state. From equation (31) we see that in the
single-electron case the correlation function is just r(i−j)
that used in the q-dependent transformation S1.

To describe the polaronic state at different k the
energy band distortion, calculated according to equa-
tion (29), is plotted for different parameters in Figure 5
for 1D and 2D. The band is suppressed from above be-
cause of the polaronic effect.

5 Summary and discussion

A new perturbation approach is developed for single- and
many-electron Holstein model in one-, two-, and three-
dimension. The results show that this approach has a good
agreement with the ME theory in the adiabatic regime
when the coupling is moderate (λ < 1) but with the
LF theory in the antiadiabatic regime (ω0/W � 1). In
the intermediate region, our approach can describe the
transition from a large-polaron Fermi-liquid to the small-
polaron, and this transition may be discontinuous in adi-
abatic regime, which means a phase transition appears in
many-electron system. In single-electron case, we elimi-
nate the abrupt transition using the degenerate perturba-
tion theory, and the calculated ground state energy and
effective mass are successfully compared with those of pre-
vious authors.

The purpose of our unitary transformations is to find a
better way to divide the Hamiltonian into the unperturbed
part and the perturbation. In this work the transformed
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Fig. 5. Polaronic band structure (in unit of t) (a) for 1D with
ω0/W = 0.4 and λ = 0.25; (b) for 2D with ω0/W = 1.0 and
λ = 0.125, The dotted curve gives the free electron disper-
sion εk.

H ′′ is divided into two part: The unperturbed part is H ′′0
and the perturbation H ′′1 +H ′′2 . We believe that the unper-
turbed part H ′′0 contains the main physics of the coupling
system because the effect of the first order terms in H ′′

(H ′′1 ) is eliminated in the lowest order of perturbation by
introducing a function δ(k + q,k).

In our approach, the first transformation is done to
the end and after the transformation all terms have been
collected. The second transformation cannot be done to
the end and we stop after the second order. The expan-
sion parameter of the second transformation S2 is, in fact,
g
ω0

(δ(k + q,k) − rq). This expansion parameter is quite
small or even ∼ 0 in the following four limiting cases:

1. Adiabatic limit (ω0 = 0): at this limit rq = 0,
δ(k + q,k) = 0 (Eq. (15)), so we have δ(k + q,k)−rq = 0.

2. Antiadiabatic limit (ω0 → ∞): at this limit rq =
1 and δ(k + q,k) = 1 (Eq. (15)), and we also have
δ(k + q,k)− rq = 0.

3. Strong coupling regime (Ep/ω0 � 1): the narrow-
ing factor η, derived from equation (26), should be small
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enough (η → 0) and then the difference δ(k + q,k) − rq
will become small enough also.

4. Weak coupling regime (λ � 1): there should be no
problem for the convergence of the second transformation.

Hence, we believe that in the intermediate region,
ω0/W ∼ 1 and/or Ep/ω0 ≥ 1, the expansion parame-
ter g

ω0
(δ(k + q,k)− rq) should be within the controllable

region since we have 0 ≤ δ(k + q,k) ≤ 1, 0 ≤ rq ≤ 1 and
|δ(k + q,k)− rq| < 1.

This work was supported by the China National Natural
Science Foundation (Grant No. 10074044). We thank P.E.
Kornilovitch who kindly provided us the QMC data for the
effective mass of the single-polaron case.
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